
Introducing: NET Micro Framework

Colin Miller, Director

Lorenzo Tessiore, Lead Developer

Microsoft, .NET Micro Framework

Slide 2

Agenda

.NET Micro Framework Background

How it fits in MS Embedded story

Benefits of the Micro Framework

Demos

Architecture

Runtime Features

Runtime Implementation

Roadmap

Slide 3

.NET Micro Framework History

Roots in Microsoft Research

Developed from scratch for inexpensive, consumer applications
on very power limited devices

Developed to provide a platform that could be extended by a
large number of developers

Shipped commercially on the SPOT watches in 2004

Shipped with MSTV Set-top boxes

SumoRobot Kits

Will ship with Vista as the SideShow feature

Continued development for internal products shipping next
year

Slide 4

Convergence of trends in embedded

Old trends – addressing productivity and scarcity of
resources

Movement to standardized OS
Movement to higher level languages

Newer trends
Movement of 32 bit processors into 8 & 16 bit space (ARM Cortex M3)
Proliferation of low power communication alternatives

Zigbee, BT, Z-Wave, ANT, low power WiFi,…

New network protocols
Mesh networks

Enabling more rapid development of integrated embedded
solutions

Slide 5

New Opportunities

• Industrial Automation
• Corporate IT Servers to Shipping Palettes

• Home Automation
• Presence and Home Dashboards

• Healthcare
• Body Monitoring, Elder Care

• Retail
• Card Readers, Point of Purchase Devices

• Remote Displays
• Conference Messaging, Remote Controls

Slide 6

What is needed?

Decrease development time

World class tools

Increase pool of developers

Vertical integration story

Easily updateable in the field

Low cost

Power efficient

.NET Micro Framework
Based on .NET Framework
Embedded extensions

Visual Studio integration
Small memory footprint
Processors w/o MMU
Built from the ground up to be
power efficient

Slide 7

Extending the MS Embedded Story

SetSet--top boxestop boxes

Windows CEWindows CE Windows XP EmbeddedWindows XP Embedded

Windows MobileWindows Mobile
SmartphoneSmartphone

Pocket PC Pocket PC
PhonePhone

WindowsWindows
AutomotiveAutomotive

Portable Media Portable Media
CenterCenter VoIPVoIP phonesphones

MobileMobile
handheldshandhelds GatewaysGateways

Retail Retail
PointPoint--ofof--SaleSale

WindowsWindows--
based based

terminalsterminals

Medical devicesMedical devices
Entertainment Entertainment

devicesdevices

.NET Micro Framework.NET Micro Framework

Health MonitoringHealth Monitoring

WearableWearable
DevicesDevices

AuxiliaryAuxiliary
DisplaysDisplays

Remote ControlsRemote Controls

Sensor NetworksSensor Networks

Slide 8

Selecting an Embedded Platform

.NET Micro .NET Micro
FrameworkFramework Windows CEWindows CE Windows Windows XPeXPe

Example Devices
Sensor Nodes, Aux
displays, Health
Monitoring, Remote
Controls, Robotics

GPS Handhelds, PDAs,
Automotive, Set Top
Boxes

Thin Clients, ATMs,
Kiosks

Device Features Connected, Small,
Wearable, Graphical UI

Connected, Graphical
UI, Server, Browser,
RAS, DirectX

PC-class performance,
PC networking

Footprint
250-500KB
managed code
Full featured

300KB+ without
managed code
12MB with managed
code

40MB +
Depending on features

Power Very low power Low power Mains power

CPU
ARM7, ARM9
No MMU

X86, MIPS, SH4, ARM,
with MMU X86

Real-time Not Real-time Hard Real-time
Real-time capable
through 3rd party
extensions

Managed vs
native code

Managed via .NET
Micro Framework,
native code through
interop only.

Supports both,
managed code requires
.NET Compact
Framework

Supports both,
managed code
requires .NET
Framework

Slide 9

The Microsoft .NET Micro Framework
Extending .NET to smaller devices

Small .NET runtime for embedded devices
Managed Code reliability and productivity

No unsafe instructions
Memory Management/Garbage collection
Exception Handling

Lowest cost .NET platform
Memory footprint for the platform – 250K RAM
No MMU required

Develop and debug in Visual Studio
Full-featured debugging on device
Familiar tools decreasing cost of resources and training
Increased productivity

Use C#, a subset of .NET libraries, and WPF
Leverage code and data structures
Familiar coding decreasing cost of resources and training
Extensible Emulation

Slide 10

Runtime Features
UI/Shell

• Object model based on Windows
Presentation Foundation (WPF)

• Input event routing

• Layout system
• Content sizing
• Text flow
• Rich support for nested controls

• Bitmap fonts

• Images

• Pens, brushes, colors

• Vector primitives

• Alpha blending

Slide 11

Embedded Specific Features

Power management

Managed Code Drivers

Validation in post-compilation

Prioritized Persistence

Customizable Bootloader with optional signatures

Slide 12

Tools

Extensible Device Emulation
Runtime on x86
Define hardware in XML

RAM and Flash, clock speed, IO,LCD metrics, any public Property
Definition honored by the runtime

Microsoft Visual Studio 2005
Project system/templates
Integrated Post-build processing
Intellisense support
Deploy to device (USB/serial) or emulator
Interactive debugging from IDE

Breakpoints

Variable inspection

Tracing

Slide 13

Architecture
Goals

• Bootable .NET
• Minimal native code core
• Application space entirely managed

• Safe
• No direct access to hardware resources
• Managed drivers to safe access

• Secure
• Signed assemblies only

• Extensible

• Portable

Slide 14

Architecture

Slide 15

.NET Framework

System.WebSystem.Web System.Windows.FormsSystem.Windows.Forms

System.DataSystem.Data System.XMLSystem.XML

SystemSystem

ServicesServices
•• DescriptionDescription
•• DiscoveryDiscovery
•• ProtocolsProtocols

UIUI
•• HTML controlsHTML controls
•• Web controlsWeb controls

RuntimeRuntime
•• InteropInterop servicesservices
•• RemotingRemoting
•• SerializationSerialization

DesignDesign

ConfigurationConfiguration
CacheCache

Session stateSession state
SecuritySecurity

ImagingImaging
Drawing 2DDrawing 2D

TextText
PrintingPrinting

DesignDesign
ADO.NETADO.NET

SQL SQL ServerCEServerCE
SQL ClientSQL Client

XsltXslt//XPathXPath
XML DocumentXML Document

Reader/writersReader/writers
SerializationSerialization

Service processService process
ConfigurationConfiguration

ThreadingThreading
DiagnosticsDiagnostics

NetNet
IOIO

ResourcesResources
ReflectionReflection

SecuritySecurity
CollectionsCollections

GlobalizationGlobalization
TextText

Component Component
modelmodel

System.DrawingSystem.Drawing

Slide 16

.NET Compact Framework

System.WebSystem.Web System.Windows.FormsSystem.Windows.Forms

System.DataSystem.Data System.XMLSystem.XML

SystemSystem

ServicesServices
•• DescriptionDescription
•• DiscoveryDiscovery
•• ProtocolsProtocols

UI
• HTML controls
• Web controls

Runtime
• Interop services
• Remoting
• Serialization

DesignDesign

Configuration
Cache

Session state
SecuritySecurity

Imaging
Drawing 2DDrawing 2D

TextText
Printing

Design
ADO.NETADO.NET

SQL SQL ServerCEServerCE
SQL ClientSQL Client

Xslt/XPath
XML DocumentXML Document

Reader/writersReader/writers
Serialization

Service process
Configuration

ThreadingThreading
DiagnosticsDiagnostics

NetNet
IOIO

ResourcesResources
ReflectionReflection

SecuritySecurity
CollectionsCollections

GlobalizationGlobalization
TextText

Component Component
modelmodel

System.DrawingSystem.Drawing

Slide 17

.NET Micro Framework

System.WebSystem.Web System.Windows.FormsSystem.Windows.Forms

System.DataSystem.Data System.XMLSystem.XML

SystemSystem

Services
• Description
• Discovery
• Protocols

UI
• HTML controls
• Web controls

Design

Configuration
Cache

Session state
Security

Imaging
Drawing 2D

Text
Printing

Design
ADO.NET

SQL ServerCE
SQL Client

Xslt/XPath
XML Document

Reader/writers
Serialization

Service process
Configuration

ThreadingThreading
DiagnosticsDiagnostics

Net
IOIO

ResourcesResources
ReflectionReflection

Security
CollectionsCollections

GlobalizationGlobalization
Text

Component
model

•• InteropInterop servicesservices

Runtime

•• SerializationSerialization

•• RemotingRemoting

System.DrawingSystem.Drawing

Slide 18

Runtime Features
UI/Shell

• Object model based on Windows
Presentation Foundation (WPF)

• Input event routing

• Layout system
• Content sizing
• Text flow
• Rich support for nested controls

• Bitmap fonts

• Images

• Pens, brushes, colors

• Vector primitives

• Alpha blending

Slide 19

Runtime Features

• Common Language Specification (CLS) compliant
• Enables multiple languages to use the libraries

• Subset of core libraries

• Derived from Common Language Infrastructure
(CLI) v1.0

• Supports Common Intermediate Language (CIL)
execution

Slide 20

Runtime Features

• Multi-threading and synchronization

• Timers

using System.Threading;
…
Thread myThread = new Thread(new ThreadStart(this.MyWorkerThread));
myThread.Priority = ThreadPriority.AboveNormal;
myThread.Start();

using System.Threading;
…
Timer myTimer = new Timer(

new TimerCallback(this.MyTimerCallback), null, 10, 100));
…

Slide 21

Runtime Features

• Serialization
• ~60% smaller than .NET Framework

• Reflection

• Remote Procedure Call (RPC)
• Invoke methods on remote objects
• Implementation is specific to .NET Micro Framework

• Security
• XTEA (symmetric)
• RSA (asymmetric)

• Exception handling

• Delegates / multicast delegates
• Typed Function pointers
• Enables events dispatching and event driven programming vs. poll driven

Slide 22

Runtime Features

• Networking
• Support for wired and wireless Ethernet
• Sockets from System.Net namespace

• Managed Drivers
• Direct control of GPIO, PWM, I2C, SPI bus, and USART

in C# code
• GPIO interrupts safely dispatched into managed

application space

Slide 23

Runtime Features

using System.Threading;
using Microsoft.SPOT.Hardware;

…
InterruptPort myButton = new InterruptPort(

(Cpu.Pin)12,
true,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeLow

);

MyButton.OnInterrupt +=
new GPIOInterruptEventHandler(this.MyInterruptHandler);

…
}

public void MyInterruptHandler(Cpu.Pin id, bool edge, TimeSpan time)
{

// handle the interrupt event here
}

Slide 24

Runtime Implementation

• Small footprint (ROM/FLASH)
• Runtime only: ~120K
• w/ min. framework: ~250K
• w/ max. framework: ~500K

• Low RAM requirements
• ~70K system overhead

Slide 25

Runtime Implementation

• Assembly loader
• Performs minimal validation of post-processed assemblies
• Registers types with type system

• Integrated support in Visual Studio

• Microsoft Intermediate Language (MSIL)
interpreter

• Support for all MSIL instructions (except for four unsafe ones)
• Low execution latency
• Enables a pure virtual execution environment

Slide 26

Runtime Implementation

• Execution Engine
• No native thread scheduler
• Manages native work queues
• Invokes native code

• Non-traditional interoperability

• Garbage collector
• Non-incremental mark-and-sweep

• 50ms per 1M (depending on # of objects)

• Support for non-volatile storage
• Provides a basic object persistence mechanism

Slide 27

Runtime Implementation
HAL

• Bootstraps the runtime

• Provides low-level abstractions of hardware
resources

• Handles interrupts

• Asynchronous cooperative multi-tasking
• Queued work items

• Compact
• ~40K (including base drivers)

Slide 28

Current Environment Support

Currently supported chipsets (as a bootable runtime)
ARM7TDMI @ 27MHz (384K RAM, 1M Flash)
ARM7TDMI @ 50MHz (4M RAM, 2M Flash)
ARM920T @ 96MHz (4M RAM, 2M Flash)
ARM Cortex M3 (under development)
XScale in prototype

Currently supported platforms (as a hosted runtime)
Dual ARM7TDMI @ 100MHz (32M RAM, 1G Flash)
Windows XP (x86)
Motorola 68k

Slide 29

Porting

Porting Training
First session held July 2006
Combination of OEMs and ISVs
ISVs include:

3SOFT
Weschler Software
SJJ/EMAC
Embedded Fusion
OpenNetCF
MCP Data

Additional Training to be scheduled
Porting Kit publicly available early 2007

Slide 30

Windows SideShow™

•Windows SideShow is a new technology available in Windows
Vista™
•SideShow allows mini-applications (called gadgets) to send data to
devices

•Examples include: email, calendar, RSS, stock quotes, media
player remote controls

• Open platform for ISVs
•Windows SideShow support is available on the .NET Microframework
•Consider Windows SideShow for your device if:

•You want to receive information from the PC and render it
•If you want to have 2-way control of applications on the PC (e.g.
Windows Media Center, PowerPoint)

Slide 31

Roadmap

• SDK Beta 2 – now
• Open Beta
• Supports Sockets
• Supports emulation on the PC

• SDK RTM later this year

• Add-ons starting Q1 2007
• WSD
• Generally available TCP/IP stack
• more

Slide 32

Partners

Web Site: www.aboutNETMF.com

